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A new algorithim is developed here for Monte Carlo simulation of tur-
butent diffusion with random velocity fields having a power law spatial
spectrum, arbitrarily many statistical scales, long range correlations,
and infrared divergence. This algorithm uses an expansion of the
moving average representation of a Gaussian random field via a specific
orthonormat basis which exploits the scaling behavior of the random
field and yields a compact representation of the field despite infrared
divergence. The orthonormal basis involves a family of wavelets due to
Alpert and Rokhlin and the vanishing of a large number of moments for
this basis (order 3 or 4} is grucial for compact representation of the
statistical velocity tield. The authors also develop a rigorous practical a
priori energy criterion for truncation of the wavelet expansion; further-
more, for moment cancellations with orders 3 or 4 and a fixed energy
tolerance, the number of Gaussian random basis elements needed by
the method is sublinear in the exponent m, where 1 < |x] < 2™ denotes
the range of active velocity scales. The algorithm developed here has
remarkably low variance as regards sampling errors. For example, for
the infrared divergent wvelocity spectrum corresponding to the
Kolmogoroff spectrum in an exactly solvable model, the velocity struc-
ture function is simulated accurately for separation distances over more
than five decades with only 792 random basis elements and 100
ensemble realizations; with this same singular spectrum in the model
problem, the pair dispersion statistic for the passive scalar can be deter-
mined within errars of 3% throughout over five decades of pair separa-
tion distance with only 792 random elements, 1000 realizations, and a
few hours calculation on a workstation. All of the computational algo-
rithms and results are presented for a nontrivial exactly solvable model
and are described within a mathematical framework of error analysis
where analytic, sampling, and discretization errors are treated
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INTRODUCTION

Here we develop a new Monte Carlo method lor simula-
tion of the detailed statistical behavior of a scalar quantity,
T, which satisfies the advection equation

ér

VT=
6r+v =0

(L.1)

with v(.x, 1), an incompressible velocity field. The numerical
methods developed here are specifically adapted to the
chailenging problems involving a random velocity field with

{a) a power law spatial spectrum and

{(b) arbitrarily many statistical scales with long
range velocity correlations including
infrared divergence (see Section 2). (1.2)

Practical applications where the situation in (1.2) is
satisfied for the passive scalar problem in (1.1) include
predicting the statistics of markers in high Reynolds number
turbulence [ 1, 2], the tracking of pollutants in the atmo-
sphere [3], and the diffusion of tracers in heterogeneous
porous media {4]. Besides experimental measurements for
the statistics of the scalar, T(x, 1), there is a large theorctical
elfort in the physics and applied mathematics communities
to predict the statistical behavior of T(x, 1) under the cir-
cumstances in (1.2). These theoretical predictions proceed
through formal renormalized perturbation theories
involving either physical space or Fourier space representa-
tion with partial summation of divergent perturbation series
according to various recipes (see the Refs. in [1, 2, 5]).
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Statistical quantities for T(, 1) that arg of physical interest
include the mean concentration, <IT%, 7)), and the second
order correlatibns,‘-'{f(;r, t) T(x’, t")>, which are directly
related to the relative-diffusion of pairs of particles, the pair
distance function (see Section2 below and Chapter 8
of [17]). Here and below, the bracket {Q) is used to denote
the statistical ensembie average of a quantity @ over
suitable random velocity statistics. There is a great need for
new reliable Monte Carlo methods to bridge the gap
between theory and experiments for statistical predictions
for T(x, ¢} when the velocity field has arbitrarily many
spatial scales with the behavior in (1.2).

Recently, Avellaneda and one of the authors ([5-9])
have developed a mathematically rigorous exact analysis of
several statistical issues for (1.1} with velocity ficlds satisfying
{1.2) in a class of models involving simple shear layers with
many spatio-temporal scales which, despite their simplicity,
capture a number of interesting phenomena from the more
complex general problems in {1.1), (1.2} Even more
recently, Horntrop and one of the authors [10] have
developed the explicit exactly solvable statistical theory for
the special case of the shear layer models given by

JoT T
a—T+1I’—+ v{x)—=0,
oy

1.
ot ox (13)

where w is a constant representing the effect of large scale
mean flow. The random shearing velocity, v(x), in (1.3}is a

stationary Gausisian random field with zero mean, ie, °

¢{v) =0, and is completely characterized by the two-point
correlation function

Rix)= {o(x+x")v(x'}}

- j 2 (k) dk (1.4)

with E(k) the real valued energy density satisfying
E(—k}= E(k). With suitable choices for the ¢nergy density,
E(k), the statistical behavior in (1.2) can be achieved and
analyzed explicitly (see [10] and Section 2 below). The
exact formulas and subtle new statistical features for the
simple model in (1.3) which have been documented in
Ref. [10] provide an important class of elementary test
problems for Monte Carlo methods for (1.1), (1.2) with an
unambiguous theoretical basis; Ref. [11] contains a discus-
sion and analysis of the capability of existing Monte Cario
methods to reproduce the statistical features of the model
in {1.3).

Here we present the new Monte Carlo procedure in the
context of the unambiguous exactly solvable model in (1.3).
There is a direct and immediate application of these numeri-
cal algorithms to new mathematically rigorous random
shearing direction models for isotropic turbulent diffusion

satisfying (L.1) and (1.2) which have recently been
developed by one of the authors [12]; this application will
be reported elsewhere [13]. In the remainder of this intro-
duction, we outline the salient features of the new aigorithm
and also provide a brief summary of the contents of the
remainder of this paper.

In Section 2 we summarize the exact formulas and scaling
behavior established in Ref. [107] regarding the statistical
theory for the model in (1.3) as necessary background. Sec-
tion 3 contains the conceptual development of the statistical
method for the velocity field, ©(x), which involves four main
steps:

(1) Use of a generalized moving average
representation {14, 15] for a stationary
power law Gaussian random field with
infrared divergences;

(2) expansion of the moving average represen-
tation from Step (1)} via an orthonormal

basis of functions;

(3) judicious choice of an explicit orthonormal
basis which respects scaling laws for
singular power law spectra with economy
of representation;

(4) a rigorous energy criterion for accurate
compact truncation of the basic representa-
tion. (1.5)
While steps (1) and (2) are general and straightforward, the
success of the Monte Carlo method developed in this paper
as a practical aigorithm depends crucially on steps (3)
and (4). Here we utilize as an orthonormal basis a specific
“wavelet” basis constructed by Alpert and Rokhlin [16-18]
with the form

at (X) — 2»:,’2¢ar(2mx_ n)!

o {1.6)
where m and # are arbitrary integers. Here t defines the
order of the method and for each 1, the functions ¢,
¢ =1, .., 1, are afixed finite number of piecewise polynomial
functions with support on (0, 1) which satisfy the moment
cancellation conditions:

1
Jgﬁ‘”(x]x"’dx=0, g=0,1,.nt—1.  (L7)
4]

With this piecewise pelynomial basis, despite the infrared
divergence, we are able to exploit the scaling propertics of a
power law random field as well as the scaling properties
inherent in (1.6) to develop mathematically rigorous explicit
infinite series for the random field »(x) involving sums of
independent Gaussian random variables.
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In Section 3 we also develop a rigorous energy criterion
which allows us to truncate the infinite series in a very
compact fashion provided the order 7 is large enough by
exploiting suitable far field decay estimates implied by (1.7).
With the infrared divergence in the velocity spectrum
studied here, energy tolerances of 10~° are typically needed:;
for a random field o(x) with active scales ranging from
1 < |x| <2 only 792 Gaussian random basis elements are
needed to achieve this tolerance with the method of order
7=4. On the other hand, the valuec T =1 yields the classical
Haar wavelet and for the smaller number of active velocity
scales ranging from | < |x| <2 more than 10° Gaussian
random basis elements are needed for the lower energy
tolerance of order 10~ ¢ so this classical choice is not practi-
cal. In fact for T = 3, 4, we document in Section 3 that for the
Kolmogoroff spectrum in the model with a fixed energy
tolerance, the number of Gaussian random basis elements
needed by the method is sublinear in the exponent m where
1 < x < 2™ denotes the range of active velocity scales. Tt is
worth remarking here that the large moment cancellation in
(1.7) for 1 =13, 4 is crucial to the success of our methods but
the smeothness properties of general wavelets ([19]) are
not needed; the Alpert—Rokhlin multiwavelets have
precisely these features, together with explicit formulas
which allow for rigorous a priori energy criteria for practical
truncation for velocity fields with infrared divergent spectra.
Some mathematical details from Section 3 are relegated to
the Appendix.

In Section 4 we develop several practical details regarding
the implementation of the random field algorithm from Sec-
tion 3. Straightforward storage of the 792 Gaussian random
fields required for velocity scales with a range 1 < |x| < 2%
would be prohibitive for most calculations on a work-
station. We present an economical recursive scheme for
generating the random weights which requires minimal
storage. In fact, if P evaluations are needed, then the total
number of weights evaluated by this scheme is no more than
O(PM) where the velocity field has 2* active scales. These
alternative algorithms compare favorably as regards
random field evaluation with other recent schemes for
generating power law random fields [20] and should be
useful in other contexts.

In Section 5 we report on the performance of the wavelet
Monte Carlo method for the model problem in (1.3) with
an infrared divergent spectrum corresponding to the
Kolmogoroff value in the model [5-7]. We are able to
simulate the velocity structure function accurately for over
five decades with only 792 random elements and 100 ensemble
realizations!! Thus, the method has remarkably low
variance as regards sampling errors. In fact, we demonstrate
in Section 5 that with this singular velocity spectrum the
entire pair dispersfﬁfn statistic for the model with v # 0 can be
determined within errors of roughly 3% throughour five
decades of pai(-séparatian distance with 1000 realizations and

B \

{

'

|

only 792 random elements through a few hours of calculation
on a workstation. Tn*Set fon 5 we also explore the.practical
issue of the choice of a ?;Mdﬂ?étermine\a practical
time step criterion for a given separdtion distance. All of our
computational results in Section 3 are also.described within
a framework of error analysis where analytic, sampling, and
discretization errors are treated separately. The less
sensitive behavior of the mean square displacement is also
discussed in a similar fashion in Section 5.

Various alternative Fourier series [ 15], spectral [21-23],
and moving average representations [ 24 ] for random velocity
fields have been developed specifically to study turbulent
diffusion. The methods in Refs. [ 15, 21, 24] give good
results with varying quality for band-limited spectra but are
not suitable for velocity fields with long range correlations
(see Ref. [11]). The randomization algorithms from
Refs. [22, 23] have been reported in [23] to yield one
decade of scaling for the pair dispersion in isotropic tur-
bulent diffuston. The performance of all of these algorithms
on the simple model problem in (1.3) for a wide variety of
short-range and long-range correlated spectra is presented
in Ref [11]. The special version of the algorithms
developed here involving Haar wavelets (1=1) has been
used earlier to study mean square displacements for tracers
in porous media [257].

2. SCALAR STATISTICS IN THE EXACTLY
SOLYABLE MODEL

Here we summarize various exact solutions, which we
utilize in subsequent sections, for the statistical behavior of
the scalar, T{x, ), that satisfies the model problem,

a—T+*E»5T+v( )a—T—O
ar " Vax e

(2.1}
The detailed calculations as well as other explicit facets of
this model including, for example, the effects of finite
molecular diffusion are contained in Ref. [10]. For sim-
plicity in exposition, we restrict our attention in this paper
to the most difficult situations with power law spectra, long
range correlations, and infrared divergence. Other power
law spectra will be treated elsewhere by the methods of this
paper. Thus, the spectral energy function, E{k), defined in
(1.4) for the stationary Gaussian random field, »(x), satisfies

E(k)y=[k|'%, 2<e<4 (2.2)
Here ¢ with 2<e<4 is a parameter, we emphasize the
value, ¢= %, throughout this paper because this value is
analogous in the model problem of the Kolmogoroff -3 spec-
trum from turbulence theory [5-97. Actually, because of the
infrared divergence, there is only a suitable generalized
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Gaussian random field, v(x), with the energy spectrum in
(2.2} (see Section 3 and Appendix A). Instead one needs to
consider (see [5-10]) a zero mean Gaussian random field,
v%(x), characterized by the two-point correlation function

R(x)= (Wlx +x") v°(x))

:J ek k=g 2<e<d, (23)
< k|

and compute the limiting statistical behavior of the scalar
Tix,t) as 4 —0Q; this is subtle because there is infrared
divergence of energy in the limit since

R°(0) > as

=0, 2<e<d. (2.4)

In the model problem & corresponds to a negative power of
the Reynolds number in turbulence theory [6] and the
behavior in (2.4) for e=% corresponds to the infrared
divergence of energy in the high Reynolds number limit.
Below we report on exact solution formulas for the scalar
statistics [ 10] which incorporate this passage to the limit
for the model problem in {2.1) despite this infrared
divergence.

(2A) The Pair Distance Function and Pair Dispersion

The pair distance function, P{t, x, p, X,, o), 1S essentially
the second-order correlation function of the scalar, T, and is
a fundamental statistical quantity for turbulent flow [1, 2]
since Richardson’s pioneering work [26]. Next we describe
this quantity for the shear layer models in (2.1). Consider
two particles denoted by subscripts 1 and 2. Let particle |
be located at (0, 0} at time ¢ = 0 while particle 2 is at {xg., yq)
for t =0. Denote the particle trajectories in the x-direction
by X {t) and in the y-direction by ¥,{¢) for j=1, 2. For the
simple shear layer model in (2.1), X,(7) =Wt + X,(0) and
Y, (1) = f4 o(X,(s)) ds + ¥,(0). The pair distance function is
defined as

P(I, x; ya XO’ yO)
= Prob{ Xy(1) — X, (1) =x, Y3t} — Yi(t) = y|
XA0)— X,(0) = xp, ¥5(0) = ¥, (0) = y,}.
(2.5)

Despite the infrared divergence in (2.4), an explicit closed
evolution equation for the pair distance function for the
model with the velocity spectrum in (2.2) is dertved in
Ref. [10]. This evolution equation has the form

P P
il " .
ar {1, x, W) e

(2.6)

with remarkable sensitive dependence on the mean flow, w,
for w0 (see [10]). An important statistical measurement
calculated from the pair distance function is the mean
square dispersion which is directly related to the size of
clouds [1, 2, 26]. For the simple models in (2.1), only the
y-component of the mean square dispersion, {/2), is non-
trivial and it is defined by '

<12y = [ 2P, %, 3, 0, 10) . 27)

Next we give explicit formulas for the mean square dis-
persion (see [10]). We introduce the constant

P

K =j°° (1 — cos(2rk) k|7 dk

n 2172+ pi2)
= — 2.8
I'{—p/2) (25)

for —3 < p< —1. The mean square dispersion for w=0 in
(2.1) is given explicitly by

U2 x) = ({0~ o(x))*) £

=2K,_.x*7%  for 2<e<4. (29)

The mean square dispersion for w0 in (2.1} is given
explicitly by

for 2 <&« 4, With the simple form for the particle trajec-
tories described above (2.5), we have x= x4 in {2.5) so that
x in both (2.9) and (2.10) corresponds exactly to the initial
pair separation distance; also, the formulas in (2.9) and
{2.10) are presented for the special case with yp,=0 in
(2.5)—the general case involves adding the trivial term yJ to
the right-hand side of (2.9} and (2.10).

Both of the formulas in {2.9) and (2.10) satisfy the scaling
laws, for 4> 0,

B (ha, Axy= A1 (x, 1), (2.11)

This is verified immediately from (2.9) and (2.10) and is a
direct consequence of thé universal renormalization theory
developed in Ref. [10] for the model in (2.1). In Section 5
we utilize this universal scale invariance from (2.11) to
devise a class of stringent numerical tests for the Monte
Carlo algorithm developed in this paper.
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In Section 5 we utilize several analytic expressions for the
incremental covariance of the Gaussian random field with
the spectrum in (2.2). This statistical quantity is defined by

R(r, s) = {{v(r) = v(0))(6{s) — v(0)) >

= T (@ @E T E(k) dk. (2.12)
With the energy spectra in (2.2), we calculate that
Rir,s)=K,_(Ir]* >+ |st*= 2= lr—s]*7?)

for 2<g<4. (2.13)

It is worth menticoning here that the velocity structure func-

tion given by {{v(0) —v(x))?) satisfies
<(0(0)—v(x})*> = R(x, x) (2.14)

and for the simple model in (2.1), this velocity structure

function governs the behavior of the mean square dispersion
for w =10 (see (2.9)).

(2B) Mean Statistics and Mean Square Displacements

The large-scale, long-time renormalized behavior of the
mean statistics, {7 >{#, x, ¥). for the model problem was
studied in Refs. [6, 7] and a closed evolution equation for
the mean statistics, analogous to (2.6) and valid for ali
times, was derived in Ref [107], Unlike the second-order
statistics described earlier in (2.9) and (2.10), the mean
statistics, { T}, exhibit subtle effects of the infrared cutoff
parameter ¢ defined in (2.3) in the limit as § - 0 for the
regime of ¢ with 2<e<4 (see [6,7,9], and Section 5
of [10]).

The most interesting functional of {T > which measures
the mixing length is mean square dispiacement, {¥Y?*(t)>, in
the y-direction for (2.1) which is defined by

YAy = [y ay (2.15)
with point-source initial data for {T ). Let { Y 3(¢)) denote
the mean square displacement for the problem in {2.1) with
the subscript emphasizing dependence on the cutoff
parameter. The rigorous theory from Refs. [6, 7] applies

both for w=0 and w# 0 and yields the universal behavior
that as 6 — 0,

2
fim L2802 (2.16)
d-0 RB‘\"-

for any fixed ¢ > 0. Here the constant R; is associated with
the rescaled encrgy from (2.3) and is given by

1?5:4[; k11 dh = d(e —2)" 18275 (217)

An explicit quantitative confirmation of the theoretical
behavior predicted in (2.16) in the interesting situation with
W # 0 is presented in Section 5 of Ref. {10]. In Section 5 of
this paper, we utilize the rigorous theoretical prediction in
(2.16) as another stringent numericai test for the Monte
Carlo method developed in this paper with the infrared
divergent velocity spectra in (2.2).

3. DESIGN OF THE BASIC ALGORITHM

Here we carry out in detail the four main steps outlined
in {L.5) for the development of a Monte Carlo method for
Gaussian random velocity fields with infrared divergent
spectra.,

{3A) The Generalized Moving Average Representation

Here we design a Monte Carlo method to simulate the
Gaussian random velocity field with the spectral representa-
tion

U(X)=J. ezxik.rElfz(k) de!

—o0

(3.1)

where

E(k)= k)¢ for 2<e<4 (3.2)
is the infrared divergent spectrum of the random field and W
is standard Brownian motion. (We consider the essential
properties of such stochastic integrals with respect to
Brownian motion in Appendix A.) Because our goal is to
simulate the particle trajectories for (2.1), we represent v( - )
in physical space. We will develop our method from the
moving average representation {see [ 14, 15]),

v(x) = jjc (f ) E”z(k)e‘z"""‘-“"’dk) aw,

=" Glx—yyaw,, (33)

by localizing the dependence of v(x) on W. Here G is the
inverse Fourier transform of the square root of the spectrum
in (3.2} and has the formula

Glx)=(F 'EV)x)

=K |x]%, (3.4a)
where
— {1 +&/2) 2
_T I'(1+¢/2) (3.4b)
I{(e—1)/4)
and
;.:%—3 for 2<e<4. (3.4¢)
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Here the Fourier transform is defined by
FNk) =] fix)e = dx,

and & ! 1s the corresponding inverse Fourier transform. In
contrast to the usual technique of simulating a moving
average process by integration against a Brownian path, we
use a multiscale orthonormal basis which is adapted to the
kernel G so that the moving average integral can be com-
puted rapidly and accurately.

The variance of the field at a point x is the integral of the
spectrum, which is infinite for all values of ¢ with 2 <e< 4
for the spectrum in (3.2) due to the infrared divergence.
Therefore, as in the theory of distributions, we consider only
integrals of the field with respect to test functions so that the
resulting stochastic integrals will be Gaussian random
variables with zero mean and finite variance. We denote the
integral of a test function fwith respect to vf - ) by V(f) with
V() defined by

V=] fxysxrax (3.5)

With the moving average representation for e(x)in (3.3), we
have the identities

=] (FNK)EVE AV, (36a)

—0
and

V)= (Gxfix)dW,. (3.6b)

—o

(Here and below we use equality for two random processes
with the same finite-dimensiona! distributions.) The func-
tion fxg is the convolution given by

o

(fxg)x)=|  flx—y)g(r)dy.

[re)

With the formulas in (3.6a) and (3.6b), we can charac-
terize exactly when a function fis an allowable test function
for the generalized random field in (3.1). We need to require

that (J¥(f)1°> < oo and from {3.6a), this condition means
that

AV =" UFDEN K ~* dk <00, (37)

—o

In particular, if f is a function with an analytic, square
integrable or bounded Fourier transform which has a zero
of order n>¢/2 — 1 at k = 0, then fis a valid test function for
the generalized random field in {3.1) because the integral in

(3.7) is finite. Important examples of allowable test func-
tions for the numerical method developed here are given by
functions f(x), where f is piecewise polynomial with com-
pact support and satisfies

fm fix) xP dx=0

forO0< p<nwitha>e2— 1 for 2<e<4. For any two test
functions fand g both representations of ¥{ - )in (3.6a) and
(3.6b) have the first and second moment properties

Hf>=90 {3.8a)

HNTRD = (FNTF 2N Bk dk

=" G NN T gGar. (8b)

(3B) An Orthonormal Expansion for the
Moving Average Representation

We will derive our method from the moving average
representation, formula (3.3) using the orthonormal expan-
sion of white noise given in Appendix A, For any square
integrable functions g and & on the real line, we use the
notation

(& m=]" gx) A dx,

for inner product and define white noise as the linear map

Megy={" stxyaw,.

which sends functions into Gaussian random variables {see
Appendix A). Let {¢,|n=0, 1, ...} be an orthonormal basis
for the square integrable functions on the real line. Any
square integrable g has the expansion

£= 3 (26 6n

Therefore, as can be justified by formula (A.3) in
Appendix A, this integral has the expansion

N =[ glxyaw,
(T (5 00,)
n=0

= i (g ¢.) N(9.).
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For any allowable test function f] it follows from Egs. (3.6b)
and (3.7) that (G « /') for g in the above expansion so that
V(f) has the expansion

Vif)= aw .

t—i

~ NG+ 1)
= L (G4, NG

As indicated in Appendix A, {N(¢,}|n=0,1,.} is a
sequence of independent and identically distributed
Gaussian random variables with mean 0 and variance 1.
(The partial sums of this representation correspond to pro-
cesses which converge in finite-dimensional distribution to
V{-}) Since convelution is a symmetric operation and
satisfies

(Gxfd,)={fC*d,).

we obtain

= Y (£, G*4,) N(d).

=10

(39)

provided that each ¢, is an allowable test function. Equa-
tion (3.9} describes the theoretical representation that we
use in the numerical procedure.

(3C) The Alpert-Rokhlin Multiwavelet Basis

We will now consider multiwavelet orthonormal bases for
the expansion of white noise in formula (3.9} We will
describe multiwavelets, show that the homogeneity of G
makes them particularly suited to multiwavelet expansion,
describe the Alpert-Rokhlin multiwavelets, and show that
these multiwavelets are adapted to the representation of
F(-)in {3.9).

A multiwavelet {a generalized wavelet) is a set of functions
{¢""le=1,2, .., t} that has the property that its discrete
translates and dilates

{7 {x)=2"2p"(2"x —n) | mneZ,a=1,2,..,1}
(3.10)

form an orthonormal basis for L*(R). We will use the term
wavelet to refer to a function from a multiwavelet, although
the term usually refers to a single function whose dilates and
translates form a basis for L?(R). The double subscript
notation

T(x)=2"2$""(2"x —n)

for dilation and translation is standard for multiwavelets,
The superscript t denotes the order of the multiwavelet
basis (see the definition below). The first subscript is called
the octave and the second subscript is called the franslate;
we wish to reserve the use of the term scale to avoid later
confusion. In this notation, an L” function g has the expan-
sion

g= z Z (ga mn) fntn'

a=1 mnecZ

Assuming that the multiwavelet basis consists of
allowable test functions for the generalized random field
V() by utilizing the formula in (3.9),

V=3 3

¢=1 mneZ

(£ G+gn ) N(g7).  (311)

One apparent numerical difficulty is the convolution of G
with all dilates and translates of ¢°%. Recall from Eq. (3.4)
that G is a homogeneous function of x. Thus, by simple
rescalings, once G * ¢ is known, then G * ¢, is known for
all m and # according to the formula

(G *d7,)x)=

Therefore, only 1 convolutions need be computed.

272G g2 —n). (3.12)

DeriniTION  (The  Alpert-Rokhlin - multiwavelets; see
[16-18]). An Alpert-Rokhlin multiwavelet is a set of

piecewise polynomial functions {¢”*|o=1,2, ., 1} with
support contained in [0, 1] with the properties
Orthonormality,
( tr::n! :fn’):édo’émm’arm (3.133)

Moment cancellation,
1
j 6" (x)xdx=0 for g=0,.,7—1 (3.13b)
Q

(Anti- )symmetry

P71 —x)=(—1)""""1 ¢7"(x), (3.13¢)
where J; is the Kronecker delta and such that the dilates
and translates (3.10) form a basis for L*(R) for each natural
number 7.

For every 7 such a family can be constructed through an
orthonormalization procedure (see [ 16~18]). The first four
families can be constructed from the collection of polyno-
mials,

pll(x)=1
plxy=—142x
pPAx)=—2+3x
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PR (xY=1 = 24x 4+ 30x?
pP(x)=3—-16x+ 1557
pUx)Y=4-- 1541252
PHx)=1+4x—30x% + 28x°
pHx)= —4 + 105x — 300x2 + 210x°
p{x)= —5+48x—105x* + 64x°
p¥(x)= —16+ 105x — 192x? + 105x°
n (0, 1} via symmetric and anti-symmetric extension to

{—1,1). This resuits in families of piecewise polynomial
functions on {—1, 1) determined by the formula

. g+1—1

LJ%WP“(—x) i xe{-1,0)
fo(x)= mpm(x) if xe{O,l]

0 otherwise,

where

e = (e ax.

Translation and contraction to the interval {0, 1) gives the
formula

=2 1)

for function number ¢ in multiwavelet family 1.

With the moment cancellation properties in {3.13b), it
follows from our discussion below (3.7) that the Alpert-
Rokhlin multiwavelets are allowable test functions for the
generalized random field in {(3.1). Thus, the expansion in
(3.11) with coeflicients from (3.12) is valid. For the special
case T = 1, the function ¢' = h is the Haar wavelet,

-1 if xe(0 1)
+1  if xe(3, 1)
0 otherwise

h(x)= (3.14)

which was the first wavelet discovered (see [19]). We shall
see that because this wavelet cancels only one moment it is
not adequate for the effective numerical representation of
the velocity fieid, vl - ).

{3D) Truncation of the Multiwavelet Expansion and
the Energy Criterion

We must truncate the multiwavelet expansion, Eq. (3.11),
to include only a finite number of wavelets so that we can

use it for numerical simulation of of - }. We first iimit the
nuimnber of octaves in the expansion and, then, the number
of wavelets at each octave. i we include M contiguous
octaves in our simulation, it does not matter which M
octaves we include; we can convert any M-octave expansion
into any other by simple scaling. At a given octave, we shall
see that the wavelets nearest x contribute the most to the
statistical energy (variance) of the field. Therefore, we use
the formulas for the truncation of the field,

O )x) N(g3,) (3.152)
o=1 mune?
= ). Z Y (G * $5)(x) N7 (3.15b)
e=1 m=0 nes
T M-—1
=2 X Y (G NG, (B15¢)
g=1 m=0 |n—=|27x || <ry
where r,, is the bandwidth of the expansion at the mth

octave. With |r—| 2"x || appearing in formula (3.15¢),
the notation [« | refers to the largest integer less than or
equal tos. Equation (3.15b) is the M-octave expansion;
Eq. (3.15c) shows the truncation of the field at each octave
according to the proximity of each wavelet to x. As the
number of octaves in an expansion-like formula (3.15b)
approaches infinity, the approximate field converges (in dis-
tribution) to »( - ). As the bandwidth r,, tends to infinity at
each octave m in Eq. (3.15c), the approximated field con-
verges to the field described in (3.15b). Therefore, these are
convergent approximations for simulating the generalized
random field v( - ). It is worth remarking here that {3.12) can
be used in the final approxtmation from {3.15¢), yiclding

¥y ¥

(G g7, 0x) Nig7L)
o=1 m=0 |[n—-|2"x]|<rm
T M-
— E Z Z gt =172 —2)
o=1 m=0 (n—| 2%l <ry

X{G * gTW2"x —n) N(g}7)

n

(3.16)

with A=(e—3)2for2<e <4
The success of the proposed algorithm based on (3.16)
depends critically on the following fact:

For fixed m, the convolutions (G * ¢”*)(2"x —n)
decay rapidly with increasing n, provided that the
number of vanishing moments, t, in (3.13b} is large
enough. (3.17)

The fact in (3.17) allows for compaet and efficient represen-
tation of the random field, provided that 7 is large enough;
we show below and in Section 5 that the Alpert-—Rokhlin
multiwavelet with order © =4 provides sufficient accuracy
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with economy of representation to yield over five decades of
accurate scaling behavior for the second-order statistics in
the model problem described in Section 2.

Next we state some explicit a priori decay estimates for
the convolutions & # ¢°° which quantify the fact in (3.17);
these estimates lead to a practical essentially sharp a priori
bound on the statistical energy depending on £ and < for the
terms ignored in the truncation at a given octave in going
from (3.15b) to (3.15¢c). We state these bounds only for the
unit scale, m = 0, for simplicity, since trivial rescaling aliows
us to achieve similar bounds for any other octave. We apply
these bounds to a practical energy criterion immediately
after their statement; the interested reader can consult
Appendix B for the proofs.

THEOREM  Provided that € satisfies 2 < e < 4, the number
of moments canceled, t, satisfies 121 and x satisfies
ln— x| =24, the convolutions G+ ¢" satisfy the decay
estimate

NG * ¢ Hx—mi < Kln—Lx )", (3.18)

where A= (& — 3)/2 and K is the absolute constant in (3.4b).

This theorem has the following immediate consequence:

CororLarRY {Energy criterion). For 2 <& <4 and given
an Alperi—Rokhlin multiwavelet with order t, the statistical
entergy (variance) at the unit scale from all translates at a
distance greater than or equal to r from x and defined by

2
(G 7 Yx-n N3] )

mn

0

n—Lxllz=r

oo . 2
-x0 g ([T wrevena) @)
In—Lxjlzr N
satisfies the estimate
(r__l)zf-i—ri+l
S 2K—F——r 3.20
E.<2K 2(r-4)—1 (3:20)

Jor r =4, where A ={g— 3)/2. In particular this energy in the
“tails” decreases rapidly for larger values of the order 1.

Since the Haar wavelet corresponds to t=1, from the
coroliary the rate of decay of the energy in the tails is very
slow with the rate o(r —*?) for the Kolmogoroff spectrum
value, £=9%; we will see below that the Haar wavelets
require impractically many elements per octave compared
with the other Alpert~Rokhlin multiwavelets with larger
values of 1.

The Practical Energy Criterion for Truncation

Our practical criterion for determining the truncation of
multiwavelets at each octave is that the total fraction of

energy lost in all computed octaves in going from
Eq. (3.15b) to Eq. (3.1c) should be less than a prespecified
tolerance, f.. The statistical energy lost in a given octave
was computed according to the theoretical estimate in the
corollary and these contributions were summed over the
given number of octaves to determine the total energy lost.
Table I shows the results of some computations to deter-
mine how the order of the moment cancellation 1 affected
the number of wavelets required for a given tolerance. We
began with a 20-octave truncation according to Eq. (3.15¢)
with £ =3, We used energy tolerances 7. = 107, 107¢, and
10~® to produce truncations according to formula (3.15¢c)
for multiwavelets with t=1,2,3, and4. For the Haar
wavelel, T=1, with 1, = 10"%, 5496 wavelets were required
for the 20-octave expansion. For the same wavelet with
1. < 107% more than 100,000 wavelets were required for the
entire expansion so that this Haar wavelet could not be used
with smaller energy tolerances. For the second multi-
wavelet, t=2, the numbers of wavelets required for
t,=107% 107° and 10~* were 244, 752, and 2868, respec-
tively. For the third multiwavelet, r =3, the numbers of
wavelets required for +,=10"% 107¢, and 10 * were 300,
342, and 660, respectively. For the fourth multiwavelet,
1 =4, the numbers of wavelets required for t,=10"%, [0 9,
and 10 ~® were 400, 400, and 448, respectively. At an energy
tolerance of 107° the Haar wavelet required at least 250
times as many wavelets for the truncated expansion as the
fourth-order Alpert-Rokhlin multiwavelet.

Obviously, the Haar wavelet is inadequate for accurate
expansion of the field with e=%. Since the field u( -} has
infinite energy and most of the interesting statistics we will

TABLEI

The Sensitivity of Wavelet Count to Energy Tolerance

Muliiwavelet Number of Energy [oss Number of
order octaves tolerance wavelets®*
1 20 10—+ 5496
1 20 103 20314
1 20 10-¢ 2= 100000
2 20 10~ 244
2 20 10-¢ 752
2 20 108 2868
3 20 10—+ 300
3 20 10-¢ 342
3 20 108 660
4 20 10-# 400
4 20 10-¢ 400
4 20 0% 448

“ For the Haar wavelet with energy tolerances of 10~° or less, more than
100,00 wavelets were required for the full expansion. Since these
requirements are far from practical as well as difficult to calculae
accurately, we do not report them.

* The sensitivity of the expansion to energy tolerance decreases with the
multiwavelet order.
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TABLE 11

Increase of Wavelet Count with the Number of Octaves

Multiwavelet Number of Energy loss Number of
order octaves telerance wavelets
2 15 10-8 2266
2 20 10-8 2368
2 25 10-% 3374
2 30 0% 3788
3 15 103 519
3 20 10°*% 660
3 25 10-8 795
3 30 10-8 918
4 15 108 340
4 20 10-* 448
4 25 10—* 556
4 30 10-% 664

compute will involve the difference in the values of v at two
points (see Section 2 and Section 5), we choose to work
with small tolerances to avoid dynamic range errors in our
numerical calculations. We could not consider a tolerance
greater than 10 ~%; therefore, we had the option of selecting
1=13 or 4, which had the two smallest wavelet counts for
this tolerance. We chose 1=4 and used strict energy
tolerances (< 10™%) for our computations in Section 3.
While this combination produced excellent results, we did
not err too far on the side of caution.

We also determined that, for a fixed energy tolerance, the
number of wavelets in an expansion is apparently linear in
the number of octaves, as Table Il indicates. For 1 =4,
t,=10"% and M = 15, the expansion required 340 wavelets.
For the same values of 7 and ¢,, with M =20, 25, and 30
levels, 448, 556, and 664 wavelets, respectively, were
required. This reflects a growth which is slightly less than
lincar in M, the number of octaves. This is a remarkably
compact representation of this random field.

4. IMPLEMENTATION OF THE METHOD

Accurate and rapid computation of the truncated field

AM-—1

valx)= Y y i (=172~ i)

m=0 |n—|2"x]l|<r, a=1

X (G * ¢7 ) x —ny N(¢y y <)) (4.1)
determined in Section 3 requires special considerations.
First, while the convolutions involved are exactly com-
putable, the exact formulas are numerically unstable for far-
field (Jn—[x || large) computations; therefore, we use a
combinpation of exact and asymptotic formulas. Second, the
random weights for the field must be computed in a manner
that takes advantage of the sparseness of the formula in

(4.1). Moreover, the method should not require the storage
of all random numbers used to generate v( - ) because the
storage may be limited, especially in massively parallel com-
putations with one field realization per processor. Further-
more, since only a few random numbers are used in the
computation of v(x) for a given x, most of the numbers
necessary to generate the entire field will never be used.

(4A) Computation of Convolutions

We will now describe how we precompute the convolu-
tions of the kernel with the multiwavelet {¢**|a =1, ., T};
these convolutions are stored as functions of x for rapid
evaluation during the simulation of the field o(-). As we
have said, we use both exact formulas for x near [0, 1] (the
support of the multiwavelet) and asymptotic formulas for x
far from [0, 17. This precaution is necessary because the
exact formulas are numerically unstable for x far from
[0, 1] and the asymptotic formulas will not converge for x
in [0, 1]. The unit-scale multiwavelet {¢""|o=1, ., 1} is
composed of functions which are piecewise polynomial on
[0, 1]. Therefare, we can exactly compute the convolution
(G * ¢"")(x), for G(x)= K |x|*, by computing integrals of
the form

[ Kty =¥ pr dy

X

— | Kty=xrp(r)dy
il x<a<b

[ &tx—y¥ py) dy

a

b .
L Kix—y|*ply)dy= +J.b K(y—x) p(p)dy

if a<x<b

r K(x—yY p(y)dy

- L K(x—y) p(y)dy

if a<b<x

(4.2)

For x near [0, 1], the exact formula for (G * ¢7")(x) is
numerically accurate, For x far from [0, 1], this formula
involves the difference of two nearly equal quantities so that
it cannot be computed accurately with limited precision
arithmetic. Therefore, we limited the use of the exact
formula to —i<x<3.

For x more than a distance § from [0, 1], we computed
the convolution using the asymptotic formula that we
derived through binomial expansion of |x — y!%,
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1
Ky Cl q)(—1) My(x)=e,

g =0
x>1
(G*¢™ ) x)= @ (4.3)
K(—1y*+e Y Cla,g)—1)*
g=0
xMZ(l—x)"’”, x <0,

where C(J, ¢) is the binomial coefficient and

1
M= _I:) x4 (x) dx
is the gth moment of ¢”°. As ¢, — w, this seties converges
absolutely; by ensuring that x is a prescribed distance from
[0, 17, we controlled the rate of convergence to minimize
the degree of the polynomial vsed to compute the convolu-
tion to a given accuracy.

(4B) Computation of Random Weights

It is essential to compute the values of the random
weights in the truncation formula {4.1) carefully because the
total number of random weights that would be needed to
simulate o(x) for xe[0, 1] is exponential in M (about
2™ 1+ 2bM, where b=supir, /m=0,1,.,M—1} and
r,. 15 the number of multiwavelets to the left or right of x at
scale m), while the number of weights required to evaluate v
at a single x is linear in M (about M(2bh + 1)). If P evalua-
tions are needed, then the total number of weights evaluated
is no more than PA(2b + 1). Since P is not a function of M,
selective computing of the weights reduces the amount of
work required from an exponential quantity to a linear
quantity. Therefore, we will describe an efficient means for
computing the random weights as needed, which results in
such linear behavior. We begin by determining which
weights are needed for a particular evaluation, we then use
the algebra of random number generation to show how
weights can be generated selectively, and, finaily, we derive
an efficient recursive scheme for generating these weights,

For xe [0, 1), the weights

w={N{gn)Im=0,., M-1

n=—b,.,b+2" (4.4)

o=1,.,1}

where b is the maximum wavelet “radius™ over all scales,
may be required for the simulation of the field u(-} (see
formuta (4.1)). Because white noise N(-) preserves the
orthonormality of the multiwavelet basts, these weights are
independent and identically distributed standard normal
random variables. However, for a given x, only those
weights for wavelets near x,

wix)={N($72) m=0, .. M—1,

[n—12"x]|<r,, o=1,.,1},

(4.5)

will be needed. Our implementation computes w(x) as a
subset of w recursively for a given seed w, and a given x by
binary expansion of x.

We begin by associating with w a sequence {y,} of i.i.d.
standard normal random variables

N(gr)=7p (4.62)

where

p=02"+n+2mb+b—-1)1+0—1. (4.6b)
This assoctation orders w from scale 0 to scale M — 1 and
from left to right.

The sequence {y,} is simulated from a transformation
of {u,|p=0,1,..,¢c—~1}, a finite sequence of random
variables which are uniform on {0, 1,.,c¢—1}, where
¢=2". The Box-Muller transformation, which maps {u,}
to {y,}, i

N (=2 1In(u,/c))'? cos(2nu, . , [c), if piseven,
P l(=2in(u,_, /c))"* sin(2nu,fc), il pisodd.
(4.7)

Since u,,, and u,_, can both be obtained frem u,, we
consider y,, to be a function of u,,.

The sequence {u,} is defined by the recurrence relation
u,=flu,_)=au, _,+b (mod c). The set w(x) consists of
M continguous blocks (one per scale) of (25 + 1)t numbers
from {y,} which is generated from {u,}. We require a way
of jumping over the very large irrelevant portions of {u,} to
access the relevant portions. Fortunately, the algebraic
properties of f provide a technique for jumping forwards
and backwards in {u,}. The function fis a linear congruen-
tial generator (lcg); a is relatively prime with respect to ¢ so
that fis reversible. The collection of reversible lcgs forms a
group under composition so that if

filx)=a,x+b, (modc) (4.8)
and
fi¥)=a,x+b, (modc), (4.8b)
then
(f2* fix)=asa, x+ab,+b, (modc). (48c)

Moreover, f generates a group of maximum cycle length ¢ so
that f<~'=jf"". This enables us to jump within the
sequence {u,} by using powers of f'so that

up+qr=fq(up)
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develop a useful time step criterion based on the separation
distance.

We also exploit the self-similar scaling character of the
exact pair dispersion statistics for both w =0 and w0 as
expressed by the scaling law in (2.11) as a stringent numeri-
cal test. The Monte Carlo approximations based on (5.1) do
not exactly satisfy these scaling laws but we calculate the
range (over five decades), where a very accurate approxima-
tion (within 3%) to the scaling law in (2.11) is achieved.
Thus, we often rescale the computed data for the pair dis-
persion as well as other statistical quantities in a fashion
consistent with the scaling law in (2.11). We define the
dissipation length, d;, to be the length of the support of the
smallest wavelet in the truncated expansion in (5.1), ie.,
dy=2""" The data which we present below are often
scaled by some factor d which is a small muitiple of the
dissipation length d,, with the time ¢ and the separation dis-
tance x scaled by d ~'. We scale the pair dispersion by the
factor d 7 according to the exact theoretical formula in
(2.11); with the formula in (2.13), we scale the incremental
covariance defined in {2.12) by d?~*. While we mostly pre-
sent numerical results for the much more difficult statistics
of the scalar involving pair dispersion, we conclude this
section by computing the mean square displacements in
the medel with the Monte Carlo algorithm based on the
representation in (5.1). Here we compare the computed
results with the rigorous theoretical prediction from (2.16)
and corroborate this prediction.

(5A) Computation Results for the Mean Square Dispersion
(5A) ). Zero Mean Velocity

We summarize the computational results for mean square
dispersion in the case that w=0, In this case we will
explicitly and accurately account for the sources of error.
From (2.9) and (2.14} the mean square dispersion in for
w=0is simply governed by the velocity structure function
which is the incremental variance R(x, x). The total error in
estimating R{x, x) via simulation is the sum of the bias and
the sampling error. The bias is the difference between a
parameter of the truncated field (e.g. R"(x, x)) and the
same parameter of the exact field (e.g. R(x, x})). The
sampling error is the difference between an estimate of a
parameter of the truncated field based on an iid. random
sample of a finite size {e.g., R*(x, x)) and the true value of
the parameter of the truncated field (e.g., R*(x, x)). In the
case that w =0, we will separately consider the bias and the
sampling error associated with the velocity structure
function.

The number of octaves in the field determines the degree
to which the value of the velocity structure function for the
truncated field, R*(x, x) will be biased from the value for
the nontruncated field, R(x,y). With the limitations
imposed by the truncation formula in (5.1) it was possible to

compute the covariance and the velocity structure function
of the truncated field without sampling error because the
terms
{NgZ )| o=12,. ., tandmneZ}

are 1.id. standard normal random variables, so that the
terms in the sum are orthogonal. (We do not wish to
belabor this point by writing out the lengthy formula, but
we do note that the value of R(x, y) for the truncated field
is computable by simultancous binary expansion of x and v,
for x, ye [0, 1).) We will refer to the parameters for the
exact (nontruncated) field as arnalypric and those for the
truncated field as semi-analytic. Thus, the analytic value
of the velocity structure function (incremental variance) is
R(x, x) and the semi-analytic value of the velocity structure
function in an M octave field is R*(x, x).

We will now investigate the dependence of the bias
(R™(x, x)— R(x, x)) on M and x. Figure | compares the
semi-analytic velocity structure functions to the analytic
velocity structure functions, formula (2.13), for 20-, 25-, and
30-octave fields with the dissipation scaling d=d,=2'"*.

Stucture Function {Scaled)

-‘-. TT lllll
10° 10" 107 10° 10 10°
Separation (Scaled)

LU LLLY S LR LA B S S R LA L0 G B L AN e 4

FIG. 1. Velocity structure function vs separation distance without
stochastic error for the true field (solid line}, a 20-octave field (+), a
25-octave field { x ), and a 30-octave field (O); scaling, d=d,.
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FIG. 2. Velocity structure function vs. separation distance for a 20-octave field without stochastic error (solid line) and with (a) 10, (b) 100, and

(c) 1000 realizations (< ); scaling, d=d.

Generally, the bias at a particular separation diminishes as
the number of octaves of multiwavelets at scales larger than
that separation increases; this is not surprising because the
energy in the field is greater at larger scales due to infrared
divergence. This effect is particularly evident in the large
bias in the velocity structure function seen for the 20-octave
field at separation distances larger that 21°4; moreover, this
bias is largely absent from the 25- and 30-octave field plots,
which have 5 and 10 octaves of multiwavelets at scales
larger than 2'°d, the upper limit of the graph. For the
20-octave field the semi-analytic values are within 5% of the
analytic values for separations between 2%d to 2'% (2.4
decades), for the 25-octave field the semi-analytic values are
within 5% of the analytic values for separations between

581/113/1-7

TABLE 1II

Power Law Exponents for the Velocity Structure Function”

Number of realizations

Number of Range of fit?

octaves (M) (log.{x)) 10 100 1000 oo (semi-analytic)
20 2-10 0.786 0.693 0.660 0.661
25 2-15 0606 0630 0654 0.664
30 2-19 (656  0.65! 0.660 0.666

% Recall that the formula for the velocity structure function is R(x, x} =
{{o(x) - o(0))*> = K | x|*~ % Because £ = %, the anaiytic value is .

* The velocity structure function statistics were dissipation scaled. The
scaled length x for which the velocity structure funciion was measured
ranged from 2°to 2%~ L
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2%d through 2'°¢ (3.9 decades), and for the 30-octave field
the semi-analytic values are within 5% of the analytic
values for separations in octaves 22d through 24 (5.1
decades). The 30-octave field has a | % tolerance region that
extends from x =2%7 to x =2'24 (2.1 decades). As Table 111
indicates, the power laws derived by least squares fitting of
semi-analytic data for the 20-, 25-, and 30-octave fields in
the 5% tolerance regions were 0.661, (.664, and 0.666,
respectively, with the analytic value being %; the power laws
associated with fits over the entire range, 2°d through 2%,
were 0.554, 0.656, and 0.668 for the 20-, 25-, and 30-octave
fields, respectively.

Our multiwavelet expansion allows estimation of the

velocity structure function (incremental variance) with very
small stochastic error (RM(x, x)— R™(x, x)) as indicated
by Table IIT and Fig. 2 through 4. These figures describe
Monte Carlo simulations of mean square dispersion
statistics for 20, 25, and 30 octaves with 10, 100, 1000
realizations, as noted. For the sample size 100, the estimated
values are fairly close to the semi-analytic values so that, as
Table I indicates, the power law fits over the 5% bias
tolerance ranges are 0.693, 0.630, and 0.651 for the 20-, 25-,
and 30-octave fields, respectively. For the sample size 1000
the estimated values are almost indistinguishable from the
semi-analytic values so that the power law fits over the 5%
bias tolerance ranges are 0.660, 0.654, and 0.660 for the 20-,

T 10
5]
kA
s
= ]
g 10
2
'
[
2
g 0
7]
- T — e T — T
10’ 10 ? 10’ 10 1e*
Distange (scaled]
g 10
®
r3
B s
T 10 rY
5 Y
@
5 7
£ 10
]
b
ey T
1¢0° 10’ ? 10’ 10 10°
Distance {scaled)
ki
&
[ =4
5
]
=
2
'S
¢
2
B
2
7]
C
T T 7 lll'll I S ) 'l_llll LS I_"llllll T ll“ll L] T Illlll L
10° 10' ? 3 10° 1o*
Distance {scaled)

FIG. 3. Velocity structure function vs separation distance for a 25-octave field (see Fig, 2).
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25-, and 30-octave fields, respectively. None of these power
laws has more than a 2% error with respect to the analytic
power law.

The small sampling errors for the velocity structure func-
tion (incremental variance) can be quantified rigorously.
Because o(x)—(0) and its truncated approximation
™{x)—v™(0) are Gaussian with mean 0, the estimator for
the velocity structure function has a gamma distribution.
Therefore, with RY(x, x) = (1/r) X5_, (v¥(x) —v*(0))* the
guantity

RM(x, x)

27 M (% x)

has the cumulative distribution function

;yzflef_vjﬁ

P(ZSZ)ZJ‘() Wdy

with a=r/2 and f=2/r. Table IV gives the probability of
exceeding certain percentages of error for several sample
sizes according to this distribution. This indicates that high
accuracy is possible for moderate sample sizes; for example,
an error of 10% or less has a probability of 0.975 for a
sample size of 1000 and an error of 5% or less has a
probability of 0.975 for a sample size of 4000.
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FIG. 4. Velocity structure function vs separation distance for a 30-octave field {see Fig. 2).
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As one would expect from the previous observations, the
simulations of mean square dispersion for w=0 are
generally very accurate. Figures 5a through S5d give the
results of the simulation of mean square dispersion with
initial separations x of 104 through 10*d with 4 = 164, and
M =130. As indicated, the graphs compare. the anaiytic
predictions with the results from 1000 realizations. As one
would expect from formula (2.9) the errors are constant
with respect to time because they are dependent only on the
estimate of R(x, x), which determines the amplitude of these
parabolas, The results are generally quite satisfactory with
errors on the order of 1%; however, an atypical sampling

error of 9% was observed for one simulation of mean
square dispersion for w =0,

Since the particles started at (0,0) and (x,0) have
constant velocities in each realization, the step size for the
integration is irrelevant for w =0. Nevertheless, step size
was an important consideration for the estimation of mean
square dispersion when w #0.

(5A) 2. Non-zero Mean Velocity

We will now consider mean square dispersion in the case
that w 0. By symmetry we assume that w > 0 and without
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Probability of Exceeding a Given Error in Estimating
the Velocity Structure Function

Error level Number of Probability of
(percentage) realizations eXCess error

25 100 7.51716 x 1072

25 250 557894 x 10~

25 300 122128 x 1074

25 1000 <10-8

10 100 4.79007 x 10!

10 250 262740 x 107!

10 500 113364 x 107"

10 1000 253316 x 102

10 2000 160923 x 10~

10 4000 9.06070 x 10 ¢

10 8000 <10°°

5 100 723917 x 10!

5 250 576129 % 107!

5 500 429036 > 10~

5 1000 263350 10!

5 2000 113726 x 10!

5 4000 253433 1072

5 8000 157638 x 103

¢ Probabilities less than 10~ could not be calculated accurately because
of numerical instability. The range of values listed was verified through
comparison with high precision calculations done in Mathematica.

loss of generality we set w = 1. When w = 1, the y-position of
a particle is determined by the integral of v( - ),

!
Y(1) = y(,+j0 bls + xo) ds.

In our simulations we integrated v( - ) using the trapezoidal
rule to determine the relative ¥ displacement of the two test
particles.

The results for mean square dispersion with w=1 were
generally accurate, especially for initial separations, x, much
greater than the dissipation scale, d,. Figures 6 through 9
give the results of the simulation of mean square dispersion
with w =1 and initial separations x of 104 through 10*d, a
maximum time of 100, an integration step size of 0.2d, a
scale d=16d,, and number of octaves M =30. The “a”
graphs compare the values estimated with 1000 realizations
to the analytic values given by formula (2.10); the *b”
graphs show the ratio of the estimated values to the analytic
values. Figure 6b with a separation of 104 indicates a maxi-
mum absolute error of 6% with much oscillation in this
error, This effect diminishes as the initial separation
becomes much larger than the dissipation scale d.
Figure 7b with a separation of 1004 shows a maximum
absolute error of 3%, and Figs. 8b and 9b with separations

of 10004 and 100004, respectively, show maximum absolute
errors of 1 %.

To demonstrate that the errors encountered in Figs. 6
through 9 were not due to the integration step size, we
repeated the simulations with a step size one-tenth as large
and for a time one-tenth as long. Accordingly, Figs. 10
through 13 give the results of the simulation of mean square
dispersion with w=1 and initial separations x of 104
through 10%¢, a maximum time of 10, an integration step
size of 0.02d, a scale d=16d,, and number of octaves
M = 30. Again, the “a” graphs compare the values estimated
with 1000 realizations to the analytic values given by for-
mula (2.10): the “b” graphs show the ratio or the estimated
values to the analytic values. Refining the integration step
size did not change the error history in the first 10 time units
in any study.

(5A) 3. The Choice of Integration Step Size

For the computation of mean square dispersion with a
nonzero mean flow, choosing the largest integration time
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step for a given level of error is necessary to minimize the
running time of the simulation. In order to determine an
adequate step size, we will account for each error in the
calculation separately. For w= 1 mean square dispersion is
approximated by the formula

I x) ~ <(Z

v(jh + x) m, — v(jh) m )2> (5.2a)

for h=t/n and

hi2, if j=0n
= {h, otherwise.
The resulting quadrature formula (5.2a) can be written in
terms of incremental covariance, R(-, -) (given by formula
(2.12)), which can then be approximated by incremental
covariance of the truncated field, R¥(-, ), as in formula
(5.3b) below. The incremental covariance of the truncated
field can then be approximated by an r-sampie estimate,

(5.2b)

ELLIOTT AND MAJDA

RM{.,-), as in formula (5.3c) below, All of this is sum-

’

marized in the sequence of approximations,

Y (R(jh, khY+ R(jh+ x, kh + x)

SEk=0

— 2R(jh, kh + x)) m;m,

(1 S, x)~
(5.3a)

Y (RM(jh, kh)+ RM(jh+ x, kh + x)

Sk=0
—2RM(jh, kb + x)) m, (5.3b)
Y (RM{jh, khy+ RM(jh+ x, kh+ x)

Sk=0

—2RY(jh, kh + X)) mmy, (5.3c)

where ~ denotes approximate equality. These formulas,
(5.3a), {5.3b}, and (5.3c}, are exactly computable, and we
calculated their values numerically to determine several dif-
ferent kinds of error to better analyze and control the total
error. The infegrarion error is the error in approximating
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Figure 16 (x = 100004 and A = 2000d) shows a total error
which is never more than 8.5% in absolute value and
usually less than 4 % in absolute value. In all three cases, the
worst total error is at the beginning of the run because for
the first time step the integration error is roughly 3% but
decreases rapidty thereafter. In Fig. 16 more than 5% of the
total error (solid line) at the beginning of the run is due to
sampling error (dotted line). For this collection of r = 1000
samples, RY (0, 10°d) is roughly 8 % less than the expected
value; this is a sampling artifact. Such artifacts, while not
common, can occur at various locations in the sample of
fields for various random seeds for the program.

As a practical time step criterion, we find that a time siep
size of A=02x is necessary (up to a factor of2) and
sufficient to ensure that, for all separation distances, the
integration error does not significantly contribute to the
total error. Figure 17 (x = 10004 and &= 100¢=0.1x) and
Fig. 18 (x = 10004 and 4 = 50d = 0.05x), with reiative errors
of order 1.5% and 2.5%, show error histories similar to that
of Fig. 15 (x=10004 and h=2004), indicating that the
integral is close to convergence for A = 2004, Figures 19 and
20 also show the dominant components of their total errors

ELLIOTT AND MAIDA

(sampling, truncation, or integration errors computed from
formula (5.3)) as additional plots in part “b”. Figure 19
indicates that for a separation of x = 10004, h = 400d =0.4x
is too large. The total error (solid line), which is dominated
by integration error (dotted line), increased steadily to more
than 15 % at time 80004. However, with an integration step
size of h=2004d=0.2x and the same separation, Fig 20
indicates that the total error (solid line) is never more than
8% for a maximum time of 160004. Moreover, the error in
this run was dominated by the sampling error (dotted line).

Formulas (5.32), (5.3b), and (5.3¢) make a rigorous and
detailed error analysis possible; this analysis suggests
criteria for selecting the time step size. Table V {(x = 10004
and h=400d=04x) and Table VI (x=10004 and
h=2004 =0.2x) are analyses of the percent of sampling,
truncation, and integration error composing the total error
in the first 32004 time units of the runs depicted in Figs. 19
and 20, respectively. Again, the dominant error for the step
size 1 = 0.4x is an integration error which increases steadily
from —4.4% to 12.4%, while the sampling error is no more
than 6% in absolute value. The dominant error for the step
size &= 0.2x is sampling error, while the integration crror
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decreases in absolute value for every time step after 8004,
This suggests that the time step be chosen small enough so
that the integration error does not increase with time and so
that the integration error is smaller than the sampling error
and [eads to the practical criterion, A =0.2x, which we
utilized above. Since the truncation error is less than
0.515 % in absolute value, so that it contributes negligibly to
the total error, choosing the integration step size according
to the above criteria will ensure nearly optimal results.

(5B) Computations for Mean Square Displacement

Here we consider the mean square displacement of a
particle advected by a velocity field v, () with the scale
truncation

vlx)=3Y ¥ Y el

=1 m=0 |u—1L2"x||rm

x{G * ¢ H2"x —n) N(#7,,).

mn

(5-4)

(Such a field contains the unit scale and A — 1 larger scales;
there is a slight change in notation which should not confuse
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the reader.} This choice of scaling mimics the behavior of
the cutoff field from (2.3) which is essential to recover the
theoretical limiting behavior of the mean square displace-
ment from (2.16). We will assume a non-zero mean velocity
w, and, without loss of generality, we will also assume that
w=1. Under these conditions, the displacement in the
y-direction is

!
Yilt)=[ vyls)as (5.5)
0
and the mean square displacement is
b I
> = ([ [lotrrvatsraras )
0 Y0
it T
=[] <ot vasts)> ar ds
a0
et
=j j R, (r.5) dr ds, (5.6)
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FIG. 14. Mean squarc dispersion study with w=1. Parameters
x = 10%, # = 0.2x, and @ = 16d,. (a) Mean square dispersion vs time. (Solid
line indicates analytic value. Dotied line indicates value from 1000 realiza-
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where

RM(”: 5y=0aflr) vagls)? (5.7)
is the covariance of v,(-). Of course, the mean square
displacement of a particle transported by a nontruncated
velocity field would not be defined because the covariance
function R(r, s) would not be defined due to the strong
infrared divergence of the spectrum. Instead we have the
rigorous theoretical prediction from (2.16) for the mean
square displacement as § — Q. Thus, in accordance with this
prediction, the mean square displacements, ¢ ¥,{1)*>,
should satisfy

2

M -1 ‘ <6, (5.8)
R(0,0) 2

forany 6, T>0, 0<r< T, and all M sufficiently large.

By using truncated fields of the form w,{ ) given by
Eqg. (5.4) and normalizing them according to formula (5.8)
we can determine the time interval [0, 71 for which formula

ELLIOTT AND MAIDA

(5.8) gives a good estimate of the mean square displacement.
Since the covariance

Ryg(r, 5)={oprlr) vygl(5)> (5.9)

is computabie from formula (5.4), we are able to compute
mean square displacement for v,(-), {Y,(t)*)> through
trapezoidal integration without stochastic error. Because
displacement statistics are only defined for truncated fields,
we denote the exact displacement statistics computed for
truncated fields as “analytic.”

We will now compare the analytic data for fields with
varying numbers of octaves to the theoretical prediction of
formula (5.8). Figure 21 shows the result of mean square
displacement with a dissipation scaling (for the sake of
comparison) followed by normalization according to for-
mula (5.8) for M =15, 20, 25, 30; in each case the integra-
tion step size is 64 times the dissipation scale d, and the
number of time steps is 100. For the 15-octave field, the
scaled mean square displacement decreased rapidly. The
scaled mean square displacement was down to 0.82 by time
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t=64d,; by time = 1500d, the scaled mean square dis-
placement is less than 0.20, and thereafter, the measured
value did not exceed 0.20. For the 20-octave field, the
scaled mean square displacement decreased steadily to
approximately 0.69 at 1= 6400d,. For the 25-octave field,
the scaled mean square displacement remained between 0.97
and 1.00 throughout the run. For the 30-octave field the
scaled mean square displacement remained between 0.995
and 1.000. These results obviously corroborate the theoreti-
cal prediction in (5.8) and converge as M increases.

These graphs give quantitative information about the
usefui range of formula (5.8) for various truncations and
maxirmum times, For T = 64004, formula {5.8) applies with
0<0.10 only when M =25. For T'=640d,, formula {5.8)
applies with 8<0.10 only when M =20. For T==644,,
formula (5.8) applies with 8 £0.10 when M = 15.

All of the data in Figure 21 were computed without
stochastic error; Figs. 22a through 22d compare scaled
mean square displacement computed by simulation with
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1000 realizations to the analytic data discussed above. For
the 15- and 20-octave fields, Figs. 22a and 22b show an
oscillation of the simulated scaled mean square displace-
ment about the analytic value; 80% of the data points are
within +7% of the analytic value. For the 25-octave field,
Fig. 22c shows that the simulated value 1s consistently
above the analytic value, but by no more than 4%. For the
30-octave field, Fig. 22d shows that the simulated value is
consistently below the analytic value, but by no more than
4%. This contrast in the pattern of error between the first
two figures and the second two figures of this sertes shows
that the presence of large scale wavelets in the field represen-
tation causes stochastic error to persist al a particular value.

6. CONCLUDING REMARKS

We have designed a new Monte Carlo method for the
difficult problems of turbulent diffusion involving random
velocity fields, long range correlations, and infrared
divergence. This method is based on judicious use of scaling
and localization through a compact explicit truncated
expansion involving Alpert—-Rokhlin multiwavelets with
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high moment canceilation (Section 3), together with a
recursive scheme of random number generation with
minimal storage which exploits the special structure of the
truncated expansion (Section 4). The principle for a priori
truncation of this expansion is a sharp, mathematically
rigorous statistical energy criterion (Section 3) which has
been applied in Sections 3 and 5.

The new wavelet Monte Carlo method was validated on
an exactly solvable but nontrivial test problem (Section 2,
(10, 117} with infrared divergences and long range veiocity
correlations. The computational results for such sensitive
quantities as the velocity structure function and the scalar
mean square dispersion in the model problem are very
encouraging. Not only the scaling exponents but even the
numetical values of these quantities were simulated within a
few percent over five decades of separation distance with
modest numbers of elements (792) and small numbers of
realizations (100 to 1000) on a local workstation. Further-
more, these computational results were presented within a
theoretical statistical framework which elucidated the sour-
ces of various analytic, sampling, and time stepping errors.

ELLIOTT AND MAIDA

With the low variance and compact accurate representa-
tion of the random field developed here in a simple model
problem, an important future direction is the development
of this method for multidimensional incompressible random
velocity fields. Such extensions have recently been
developed by the authors [12, 13] and will be reported in a
series of publications in the near future.

APPENDIX A: INTEGRALS OF SQUARE INTEGRABLE
FUNCTIONS WITH RESPECT TO BROWNIAN MOTION

Because the velocity field ¢ was defined in terms of an
integral with respect to Brownian motion, we review the
essential properties of integrals of functions with respect to
Brownian motion. Since we require these integrals to have
finite variance, we use only square integrable functions as
integrators. We require none of the path properties of
Brownian motion; therefore, we do not define it but refer the
reader to any good text in elementary random process
theory. Rather, we consider an integral with respect to

a
16x10 -1 .=
taxta’-l g 14 -
= 5 -
§ o é 12 o
2 8+ -~ ki -~
s -~ 5 30 o
4 o # ot
I3 6 - 2 o
[a] e =1 8- i
. 6 -
§ § 4 ’
2 a 3 a
2= 2
T 1 T 1 T T L I 1 ] T 1 2
2000 4000 6000 8000 2 4 6 8 10 12 14 1gx10
Time (scaled) Time (scaled)
0.15+ e 20
c . -7 ]
B s H
£ R g 0 —‘
] - =
o C.10- - o
i o
k3 e = 20
£ N '
g p.05 It g _l
frr} K ul -40
/
j ; ;
& g b 2
o.00- f -804
£
4
[
f -8ox16™
I T L 1 T ] 1 T T ) T 1 y
2000 4000 €000 8000 2 4 € 8 0 12 14 1610
Time (scaled} Jime {scaled)
FIG. 19, Mean square dispersion siudy with w=1. Parameters FIG. 20. Means square dispersion study with w=1. Parameters

x=10°¢, h=04x =4 x 10°d, and d = 16d,. In (b) the dotted line indicates
integration error, which is dominant.

x=10%, h=0.2x=2x 104, and d= 16d,. In (b) the dotted line indicates
sampling error, which is dominant.
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TABLE Y

Error Analysis for Mean Square Dispersion with Initial
Separation 10004 and Time Step 4004

Error
Time Sampling Truncation Integration Total
(scaled) (percentage) (percentage) (percentage) (percentage)

400 2018 —0.203 —4.440 —2625

800 0.828 —-0.219 0.170 0.779
1200 —1.983 —0.256 3612 1.374
1600 —3733 —0.306 6.989 2951
2000 —5.885 —0.358 8.977 2.734
2400 —4,641 —0.411 10.396 5344
2800 —1.188 —0.463 11.508 9.857
3200 —-0.222 —0.515 12.430 11.693

Brownian motion to be a linear map which maps a square
integrable function to a Gaussian random variable; we refer
to this map as white noise (Ref. [27]).

We begin by reviewing some terminology about squarc
integrable functions. A real or complex function f on the real
line R is said to be square integrable if it has norm

=([" veras)”

—aD

(A1)

less than infinity; the inner product of two square integrable
functions is defined by

fo=[ f0Edx

-0

(A2)

TABLE VI

Error Analysis for Mean Square Dispersion with Initial
Separation 10004 and Time Step 200d

Error
Time Sampling Truncation Integration Total
(scaled) (percentage} (percentage) (percentage) (perceniage)
200 5023 —0.193 —-2.200 —2.630
400 2922 —0.194 0.516 3.244
600 0.451 —0.201 0.936 1.187
800 —1.279 —0212 1.019 —0.472
1000 —1.146 —0.228 0.862 —0.511
1200 —0.890 —0.249 0.905 —0.234
1400 2114 —0.273 0.810 —1.577
1600 -3.086 —0.29% 0.729 —2.656
1800 —3.685 —0.324 0.663 —3.346
2000 —4.804 —0.350 (.608 —4.546
2200 —4.923 —-0.376 0.564 —4.736
2400 —3.317 —0.402 0.525 —3.194
2600 —1.089 —0.428 0.493 —1.024
2800 .495 0.454 0.465 0.505
3000 1.619 —0.480 0.440 1.579
3200 2.381 —0.506 0418 2.294
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The collection of square integrable functions is a linear
space, L(R). An orthonormal basis for L*(R) is a countable
collection of square integrable functions {¢,|n=0, 1, 2, ..}
which satisfies

1, it m=n;
(@m> B0)= {0’ otherwise.
= émr; (A3)

F=3 (66

"=

for all square integrable functions f.
We abbreviate the integral of a square integrable func-
tion f with respect to Brownian maotion by

NO=[" rwaw; (A4)

the linear map defined by this integral is white noise. For all
square integrable (deterministic) functions f and g, the
integrals of fand g with respect to Brownian motion, W, are
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FIG. 21. Normalized mean square displacement vs time with w=1

and without stochastic error. Parameters h = 64d and d=d,,. From top to
bottom the lines indicate the results for a fields with 30, 25, 20, and 15
octaves. These graphs are normalized according to formula (5.8).
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Gaussian random variables with mean and covariance
given by

vy ={[" smaw,)  as)
=" ricaw.
={
NMHF@Y=[" fg6Tdar (ASH)

ELLIOTT AND MAIDA

Property (A.5a) reflects the fact that Brownian motion has
mean 0. Property (A.5b) relates the inner product for finite
variance random variables to the inner product for square
integrable functions, These properties characterize integra-
tion with respect to Brownian moticn, just as the first and
second moments of a Gaussian random variable determine
its distribution.

To represent o - ), we must represent white noise. The
moment properties of white noise allow an expansion of
this process in terms of the orthonormal basis
{¢,in=0,1,2, ..}, for L*(R), the square integrable func-

=(f, g} tions; such an expansion is essential to the method we will
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FIG. 22. Normalized mean square displacement vs time with w = |. The graphs compare the analytic values (solid line) to those simulated with
1000 realizations (dotted line) for fields with (a) 15 octaves, (b) 20 octaves, (¢) 25 octaves, and (d) 30 octaves. (Other parameters and normalization are
the same as in Fig. 21.)
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Lemma (Far-field expansion).
then

If x is not in [A,n+ 17,

(G * 65,)(x)

=K [ -yl dy

f

Ky C,g(-1) M7

g=0

)((r—=Lx D+ m—{x )7 n—{xj< 1
K(—=1)""" ) Clhg)(—1)' MY

g=0

\ x((T+Lxl=x)+al—Lx]l¥

n—x|=+1

(B.5)

The expansion (B.5) provides an accurate means of com-
puting convolutions when || x |- #| is large, as we discuss in
Section 4B. Moreover, this far-field expansion also leads to
an estimate of the decay of the convolution with distance, In
turn, the decay estimate then gives a sharp estimate of the
statistical energy in the tails of the multiwavelet expansion
at each scale.

THEOREM. Provided that

|”*‘|_x‘” =4,

A4 <1, 21,

(G * 6)(x)| < K] In—Lx ]]* (B.6)

Proof. The proof follows from an application of the
triangle inequality, repeated use of Holder’s inequality, and
the summation formula for the geometric series as follows:

(G * ¢S <IKT S, [C(h q) M| In—Lx []7~
g=T
<IKIICGL )| S M2 x|

SIKCA D L (g+ D)7 P n—x])? ¢

g=1

SIKHCA D+ D72 n—Lx JI*7

X Z n—| x]j|*
s=0
_ Cip_In=Lxdl
KHCG D+ D =

xjn—Lx J|P
<IK| In—|x )P~

ELLIOCTT AND MAJDA

From (B.6) we obtain the important

CoroLLARY (Energy criterion). The erergy at the unit
scale for wavelet translates at a distance greater than or equal
10 ¢ fromxis

E=K* Y ((G*¢5)x))?
r—Lxllzr
_ 1)2(2—r)+1
Y <l A B.7
2 20r—-4)—-1 (B.7)
forr=z4
Proof. We recall the estimate
oo an ~1 EE]
Y n“sj 5% ds = —("—"Q—Jr)l— (B.8)

n=np np—1

for any real number « less than —1 and any integer n,
greater than 1. (The sum is a lower Riemann sum for the
integral with an integration step size of 1.) Using for-
mula (B.6} and formula (B.8) (with np=r and « = 2(A —1}j
in formula (B.7), we see that

E.<K> %
fm—pxdlzr

(Im—=LxJ1*=%)?

=2K2 io: m2().7'r)

(r__l)ll},—r]+!l
=2k’ —"—
Ar—A)—1
Since 4 = (e — 3)/2, this implies that

(J’— l)r.—2(r+l)

K2
E <2k Ar+1)—=¢

{B.9)

Therefore, for 2 < &< 4, the sum is convergent for t = 1.
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